Journal: Plant Systematics and Evolution
Volume: 302
Pages: 1345-1365


Plastid genomes have been widely applied to elucidate plant evolution at higher taxonomic levels, but have rarely been considered useful for addressing close relationships. Here, we resolve the phylogeny and taxonomy of the Chinese lianoid Gnetum clade (Gnetales), using high throughput and Sanger sequencing techniques and studies of plant morphology. Despite previous efforts, relationships among taxa and the taxonomy within the clade have remained unclear. We generated 11 plastid genomes representing one arborescent and four lianoid species. Phylogenetic analyses were conducted using (a) the entire plastid genomes and (b) the protein-coding genes only. Sequence divergence among the lianoid species was substantial, with 9345 variable sites. Four variable regions were identified, targeted and sequenced for an additional 54 specimens and analyzed together with one nuclear ribosomal marker. Results from the phylogenetic analyses corroborate G. parvifolium as sister to the remaining lianoid species and support the presence of at least five additional species in the Chinese lianoid clade: G. catasphaericum, G. formosum, G. luofuense, G. montanum and G. pendulum. Following morphological investigations, G. giganteum and G. gracilipes are included in and synonymized with G. pendulum. Gnetum hainanense is included in and synonymized with G. luofuense. Two names, G. indicum and G. cleistostachyum, remain questionable. A taxonomic revision and a key to Chinese lianoid Gnetum are presented. Internal nodes in the Chinese lianoid Gnetum clade are from the Miocene and onwards and coincide with the expansion of tropical to subtropical forests in South China, which may have facilitated speciation in the clade.