Journal: Applied Soil Ecology
Volume: 39
Pages: 65-75


Biological nitrogen fixation (BNF) is an important source of nitrogen input in many natural ecosystems. The rice production today depends on large amounts of chemical nitrogen fertilizer, which is an environmental hazard in rice producing areas. Better exploitation of BNF is one way to reduce the use of chemical nitrogen fertilizer in the future. In this study the active diazotrophic community was investigated in nitrogen fertilized and un-fertilized rice field soils in Fujian Province, southeast China by PCR-DGGE of nifH mRNA, and the potential community by PCR-DGGE of the nifH gene. A total of 45 sequences representing 33 different sequence types were recovered from the DGGE gels. The retrieved cDNA sequences representing the active population of diazotrophs both in fertilized and un-fertilized soils dispersed throughout the nifH clades (alpha-, beta- and gamma Proteobacteria, Firmicutes and Archaea). Thirteen of the sequence types were most closely related to Azoarcus endophytes indicating widespread associations between heterotrophic nitrogen fixing bacteria and rice (Oryza sativa). The majority of the 13 sequence types were identified from the cDNA samples, showing that the Azoarcus might be an important active nitrogen fixing diazotroph in the paddy field. None of the sequence types were closely related to cyanobacteria, nevertheless previous studies from the same area had documented the presence of cyanobacteira in rice fields. The lack of identified cyanobacteria might be due to template discrimination in the PCR reactions, or low abundance of cyanobacteria compared to heterotrophic nitrogen fixing bacteria.