Journal: Molecular Phylogenetics and Evolution
Volume: 24
Pages: 274-301

Abstract:

Asterids comprise 1/4–1/3 of all flowering plants and are classified in 10 orders and >100 families. The phylogeny of asterids is here explored with jackknife parsimony analysis of chloroplast DNA from 132 genera representing 103 families and all higher groups of asterids. Six different markers were used, three of the markers represent protein coding genes, rbcL, ndhF, and matK, and three other represent non-coding DNA; a region including trnL exons and the intron and intergenic spacers between trnT (UGU) to trnF (GAA); another region including trnV exons and intron, trnM and intergenic spacers between trnV (UAC) and atpE, and the rps16 intron. The three non-coding markers proved almost equally useful as the three coding genes in phylogenetic reconstruction at the high level of orders and families in asterids, and in relation to the number of aligned positions the non-coding markers were even more effective. Basal interrelationships among Cornales, Ericales, lamiids (new name replacing euasterids I), and campanulids (new name replacing euasterids II) are resolved with strong support. Family interrelationships are fully or almost fully resolved with medium to strong support in Cornales, Garryales, Gentianales, Solanales, Aquifoliales, Apiales, and Dipsacales. Within the three large orders Ericales, Lamiales, and Asterales, family interrelationships remain partly unclear. The analysis has contributed to reclassification of several families, e.g., Tetrameristaceae, Ebenaceae, Styracaceae, Montiniaceae, Orobanchaceae, and Scrophulariaceae (by inclusion of Pellicieraceae, Lissocarpaceae, Halesiaceae, Kaliphoraceae, Cyclocheilaceae, and Myoporaceae+ Buddlejaceae, respectively), and to the placement of families that were unplaced in the APG-system, e.g., Sladeniaceae, Pentaphylacaceae, Plocospermataceae, Cardiopteridaceae, and Adoxaceae (in Ericales, Ericales, Lamiales, Aquifoliales, and Dipsacales, respectively), and Paracryphiaceae among campanulids. Several families of euasterids remain unclassified to order.